Question		ion	Answer	Marks	Guidance
1	(a)		A region in which a charged particle experiences a force / acceleration	B1	Allow: Where a charge experiences a force Allow: Force per (unit positive) charge Note: Must have reference to charge <u>and</u> force/acceleration for the mark
	(b)		 Difference: Any <u>one</u> from gravitational field / force is attractive (AW) electric field / force can be either attractive or repulsive (AW) 	B1	Allow : Gravitational force is in the direction of the field / to- wards the mass Note : For the second bullet point, must have reference to both attractive <u>and</u> repulsive or 'towards charge' <u>and</u> 'away from charge'
			 Similarity: Any <u>one</u> from: Force / field (strength) inversely proportional to distance squared Radial fields 	B1	Allow: (Both) obey the inverse-square law (with distance) or (Both) have $F \propto 1/r^2$ or $g \propto 1/r^2 \frac{\text{and}}{2} E \propto 1/r^2$ Allow: 'radius or separation' for 'distance'
	(c)		 Any <u>three</u> from: The electron is repelled by B / attracted by A / experience a force to the left (Initially the) electron decelerates / slows down It does not reach plate B / It reverses direction When it returns to A it has 4 eV (of KE) It stops 2/3 of the distance across the plates (AW) 	B1 × 3	
	(d)	(i)	$E = 60 \times 10^3 \div 0.25$ / $E = 2.4 \times 10^5 (V m^{-1})$	C1	
			$F = 2.4 \times 10^5 \times 1.5 \times 10^{-13}$		Allow : $F = [1.5 \times 10^{-13} \times 60 \times 10^{3}]/0.25$ for the first C1 mark
			force = 3.6×10^{-8} (N)	A1	Allow : 1 mark for 7.2×10^{-8} (N); <i>d</i> = 12.5 cm used

C	Questio	n Answer	Marks	Guidance
	(1	ii) $t = 1.8/1.2 (= 1.5 \text{ s}) \text{ or } a = \frac{3.6 \times 10^{-8}}{8.0 \times 10^{-7}} (= 4.5 \times 10^{-2} \text{ m s}^{-2})$ $(s = ut + \frac{1}{2}at^2 \text{ and } u = 0)$	C1	Possible ecf from (d)(i)
		$s = \frac{1}{2} \times 4.5 \times 10^{-2} \times 1.5^{2}$	C1	Note : No ecf within calculation if $t \neq 1.8/1.2$
		displacement = 5.1×10^{-2} (m)	A1	Note : Answer to 3 sf is 5.06×10^{-2} (m)
		Total	11	

Question		า	Answers	Marks	Guidance
2	(a)		Correct direction of the electric field.	B1	
			A minimum of 5 field lines shown. Correct shape of field lines.	B1	Expect a minimum of 3 field lines to be normal (by eye) to the plate - ignore the angles made by the field lines at the sphere. Also there must not be any field lines within the sphere.
	(b)	(i)	$(E \propto Q/r^2$ and the magnitude of <i>E</i> is the same due to each charge A and B at X . Therefore) B has a greater charge because X is further away from B .	B1	
		(ii)	Curve showing $E = 0$ at position of X .	B1	Allow any graph, including a straight line. Tolerance for $E = 0$: $\pm \frac{1}{2}$ large square about X .
			<u>Curve</u> showing <i>E</i> is positive between A and X and nega- tive between X and B (or vice versa).	M1	Note : The curve must be continuous and pass through position of X . Ignore any curve to the right of B and to the left of A .
			The magnitude of <i>E</i> is small close to A <u>and</u> large close to B .	A1	Note : This mark can only be scored if the previous M1 has been awarded.
	(c)		Both <i>E</i> and <i>g</i> vary with 1/distance ² .	B1	Allow: $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ and $g = \frac{GM}{r^2}$ or $E \propto \frac{1}{r^2}$ and $g \propto \frac{1}{r^2}$
			(Hence the ratio is independent of the distance.)		Allow 'both are inverse square laws'.
			Total	7	

Question		on	Answer	Marks	Guidance
3	(a)		number = $\frac{2.8 \times 10^{-9}}{1.6 \times 10^{-19}}$ number = 1.75×10^{10} or 1.8×10^{10}	D.4	
				B1	Ignore a negative sign
	(b)		$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$		
			$F = \frac{2.8 \times 10^{-9} \times 2.8 \times 10^{-9}}{4\pi \times 8.85 \times 10^{-12} \times (2.0 \times 10^{-2})^2}$	C1	Note : No credit for using charge equal to <i>e</i>
			force = 1.76×10^{-4} (N) or 1.8×10^{-4} (N)	A1	
	(c)	(i)	Tension <u>and</u> weight	B1	Allow: force provided by the <u>string</u> / force in the <u>string</u> instead of tension Not: 'gravity' for weight Allow: force due to gravity Allow: gravitational (force)
		(ii)	(weight =) $6.5 \times 10^{-5} \times g$	C1	Deduct 1 mark for the use of 10 (m s ⁻²) followed by ecf
			$\tan\theta = 1.76 \times 10^{-4}/6.38 \times 10^{-4}$	C1	Note that getting to this stage scores both C1 marks Possible ecf from (b)
			$\theta = 15^{\circ}$	A1	Note: No marks if mass is used instead of the weight
			Or		
			Scale drawing of triangle of force θ in the range 13° to 18° θ in the range 14° to 16°	C1 A1 A1	
			Tatal	7	
			Iotal	1	

Que	Question		Expected Answers	Marks	Additional guidance		
4	(a)		(Electric field strength is the) force per (unit positive) charge	B1	Allow: $E = F / Q$, <i>F</i> is the force on a (positive) charge Q		
	(b)		Parallel and equally spaced lines at right angles to plates Correct <u>upward</u> direction of field shown on at least one field line	B1 B1			
	(c)	(i)	An arrow vertically downwards at P	B1			
		(ii)	$E = \frac{3400}{0.050} \text{ or } E = 6.8 \times 10^{4} \text{ (V m}^{-1)}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^{4} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text{ or } a = \frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}}$ acceleration = 1.19 × 10 ¹⁶ (m s ⁻²) or 1.2 × 10 ¹⁶ (m s ⁻²)	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $E = \frac{3400}{0.050 \times 10^{-2}} \text{or} E = 6.8 \times 10^{6} \text{ (V m}^{-1}) \text{C1}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \qquad \text{C1}$ $\text{acceleration} = 1.19 \times 10^{18} \text{ (m s}^{-2}) \qquad \text{A0}$		
		(iii)	$t = \frac{0.04}{4.0 \times 10^7}$ time = 1.0 × 10 ⁻⁹ (s)	B1	Allow: 1 × 10 ⁻⁹ (s) or 10 ⁻⁹ (s)		
		(iv)	initial vertical velocity = 0, final vertical velocity = at vertical velocity = $1.2 \times 10^{16} \times 1.0 \times 10^{-9}$ (Allow: $1 \times 10^{16} \times 1.0 \times 10^{-9}$) vertical velocity = 1.2×10^7 (m s ⁻¹)	M1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below vertical velocity = $1.2 \times 10^{18} \times 1.0 \times 10^{-9}$ M1 vertical velocity = 1.2×10^9 (m s ⁻¹)A0		

Question	Expected Answers	Marks	Additional guidance
(v)	$v^{2} = (4.0 \times 10^{7})^{2} + (1.2 \times 10^{7})^{2}$ velocity = 4.2 × 10 ⁷ (m s ⁻¹) Or $v^{2} = (4.0 \times 10^{7})^{2} + (1 \times 10^{7})^{2}$	C1 A1 C1	Possible ecf from (iv)
	velocity = 4.1×10^{7} (m s ⁻¹)	A1	
(vi)	KE = $\frac{1}{2} mv^2$ KE = $0.5 \times 9.11 \times 10^{-31} \times (4.2 \times 10^7)^2$ kinetic energy = 8.04×10^{-16} (J) or 8.0×10^{-16} (J)	C1 A1	Possible ecf from (v) Allow: 1 sf answer if the answer comes out as 8.0×10^{-16} (J)
(vii)	Graph starts at non-zero value for E_k	B1	
	Between 0 and 0.08 (m) the graph has increasing gradient	B1	
	Horizontal line after 0.080 (m)	B1	Note: The E_k value for the horizontal line > E_k value at $x = 0$
	Total	15	

Question		Expected Answers	Marks	Additional guidance
5	(a)	$F = \frac{Q}{Q}$	C1	
		$L = \frac{1}{4\pi\varepsilon_0 r^2}$		
		$(-)4.0 \times 10^{-9}$ 5.0×10^{-9}		
		$\frac{1}{4\pi\varepsilon_0 \times (1.75 \times 10^{-2})^2}$ and $\frac{1}{4\pi\varepsilon_0 \times (1.75 \times 10^{-2})^2}$	C1	Ignore signs
		$E_{\rm B} = 1.17 \times 10^5 \; ({\rm N \ C^{-1}}) \; \text{ and } E_{\rm A} = 1.47 \times 10^5 \; ({\rm N \ C^{-1}})$		
		field strength = $(1.17 + 1.47) \times 10^5$ (N C ⁻¹)		
		field strength = 2.64×10^5 (N C ⁻¹) or 2.6×10^5 (N C ⁻¹)	A1	Allow: 2 marks for $2.9(4) \times 10^4$ (N C ⁻¹) when the fields are subtracted
				Allow: 2 marks for 6.6×10^4 (N C ⁻¹) for using 3.5×10^{-2} m
		direction = to the left / towards B	B1	
	(b)	<i>O</i> a	C1	
	. ,	$F = \frac{z_1}{4\pi\varepsilon_c r^2}$		
		$4.0 \times 10^{-9} \times 5.0 \times 10^{-9}$		
		force = $\frac{4.0 \times 10^{-12} \times 3.0 \times 10^{-2}}{4\pi \times 8.85 \times 10^{-12} \times (2.5 \times 10^{-2})^2}$	C1	lanore sians
		$4\pi \times 8.65 \times 10^{-8} \times (5.5 \times 10^{-9})$		Allow: ε_0 in the equation
		$101Ce = 1.47 \times 10 (N)$	A0	
	(c)	(weight =) $4.5 \times 10^{-5} \times 9.81$ or (weight =) $4.4(1) \times 10^{-4}$ (N)	C1	Allow: weight = $4.5 \times 10^{-5} \times g$
		$top 0 = 1.5 \times 10^{-4}$	04	
		$\tan \theta = \frac{1}{4.41 \times 10^{-4}}$	01	
		angle = 18.8 (°) or 19 (°)	A1	Note: Using force = 1.47×10^{-4} (N) gives an angle of 18.4° :
				hence allow 18°
		(Allow: Full credit when angle is determined using a scale diagram)		Allow: 2 marks for θ = 71°; this is the complementary angle
				Allow: 1 mark for ' $\tan \theta = \frac{1.5 \times 10^{-4}}{10^{-4}} \theta - 73^{\circ}$, when mass is
				4.5×10^{-5} , $v = 7.5$ when mass is
				used instead of weight.
		Total	9	