Question			Answer	Marks	Guidance
1	(a)		A region in which a charged particle experiences a force / acceleration	B1	Allow: Where a charge experiences a force Allow: Force per (unit positive) charge Note: Must have reference to charge and force/acceleration for the mark
	(b)		Difference: Any one from - gravitational field / force is attractive (AW) - electric field / force can be either attractive or repulsive (AW) Similarity: Any one from: - Force / field (strength) inversely proportional to distance squared - Radial fields	B1 B1	Allow: Gravitational force is in the direction of the field / towards the mass Note: For the second bullet point, must have reference to both attractive and repulsive or 'towards charge' and 'away from charge' Allow: (Both) obey the inverse-square law (with distance) or (Both) have $F \propto 1 / r^{2}$ or $g \propto 1 / r^{2}$ and $E \propto 1 / r^{2}$ Allow: 'radius or separation' for 'distance'
	(c)		Any three from: - The electron is repelled by $\mathbf{B} /$ attracted by $\mathbf{A} /$ experience a force to the left - (Initially the) electron decelerates / slows down - It does not reach plate \mathbf{B} / It reverses direction - When it returns to \mathbf{A} it has 4 eV (of KE) - It stops $2 / 3$ of the distance across the plates (AW)	$\mathrm{B} 1 \times 3$	
	(d)	(i)	$\begin{aligned} & E=60 \times 10^{3} \div 0.25 \quad / \quad E=2.4 \times 10^{5}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & F=2.4 \times 10^{5} \times 1.5 \times 10^{-13} \\ & \text { force }=3.6 \times 10^{-8}(\mathrm{~N}) \end{aligned}$	$\mathrm{C} 1$ A1	Allow: $F=\left[1.5 \times 10^{-13} \times 60 \times 10^{3}\right] / 0.25$ for the first C 1 mark Allow: 1 mark for $7.2 \times 10^{-8}(\mathrm{~N}) ; d=12.5 \mathrm{~cm}$ used

Question	Answer	Marks	Guidance
(ii)	$\begin{aligned} & t=1.8 / 1.2(=1.5 \mathrm{~s}) \text { or } a=\frac{3.6 \times 10^{-8}}{8.0 \times 10^{-7}}\left(=4.5 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & \left(s=u t+{ }_{2}^{1} a t^{2} \text { and } u=0\right) \\ & s={ }_{2}^{1} \times 4.5 \times 10^{-2} \times 1.5^{2} \\ & \text { displacement }=5.1 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Possible ecf from (d)(i) Note: No ecf within calculation if $t \neq 1.8 / 1.2$ Note: Answer to 3 sf is $5.06 \times 10^{-2}(\mathrm{~m})$
	Total	11	

Question			Answers	Marks	Guidance
2	(a)		Correct direction of the electric field. A minimum of 5 field lines shown. Correct shape of field lines.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Expect a minimum of 3 field lines to be normal (by eye) to the plate - ignore the angles made by the field lines at the sphere. Also there must not be any field lines within the sphere.
	(b)	(i)	($E \propto Q / r^{2}$ and the magnitude of E is the same due to each charge \mathbf{A} and \mathbf{B} at \mathbf{X}. Therefore) \mathbf{B} has a greater charge because \mathbf{X} is further away from \mathbf{B}.	B1	
		(ii)	Curve showing $E=0$ at position of \mathbf{X}. Curve showing E is positive between \mathbf{A} and \mathbf{X} and negative between \mathbf{X} and \mathbf{B} (or vice versa). The magnitude of E is small close to \mathbf{A} and large close to B.	B1 M1 A1	Allow any graph, including a straight line. Tolerance for $E=0: \pm 1 / 2$ large square about \mathbf{X}. Note: The curve must be continuous and pass through position of \mathbf{X}. Ignore any curve to the right of \mathbf{B} and to the left of \mathbf{A}. Note: This mark can only be scored if the previous M1 has been awarded.
	(c)		Both E and g vary with $1 /$ distance 2. (Hence the ratio is independent of the distance.)	B1	Allow: $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ and $g=\begin{gathered}G M \\ r^{2}\end{gathered}$ or $E \propto \begin{aligned} & 1 \\ & r^{2}\end{aligned}$ and $g \propto \begin{gathered}1 \\ r^{2}\end{gathered}$ Allow 'both are inverse square laws'.
			Total	7	

Question			Answer		Marks	Guidance
3	(a)		$\begin{aligned} & \text { number }=\frac{2.8 \times 10^{-9}}{1.6 \times 10^{-19}} \\ & \text { number }=1.75 \times 10^{10} \text { or } 1.8 \times 10^{10} \end{aligned}$		B1	Ignore a negative sign
	(b)		$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & F=\frac{2.8 \times 10^{-9} \times 2.8 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(2.0 \times 10^{-2}\right)^{2}} \\ & \text { force }=1.76 \times 10^{-4}(\mathrm{~N}) \text { or } 1.8 \times 10^{-4}(\mathrm{~N}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: No credit for using charge equal to e
	(c)	(i)	Tension and weight		B1	Allow: force provided by the string / force in the string instead of tension Not: 'gravity' for weight Allow: force due to gravity Allow: gravitational (force)
		(ii)	$\begin{aligned} & (\text { weight }=) 6.5 \times 10^{-5} \times g \\ & \tan \theta=1.76 \times 10^{-4} / 6.38 \times 10^{-4} \\ & \theta=15^{\circ} \end{aligned}$ Or Scale drawing of triangle of force θ in the range 13° to 18° θ in the range 14° to 16°		C1 C1 A1 C1 A1 A1	Deduct 1 mark for the use of $10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ followed by ecf Note that getting to this stage scores both C1 marks Possible ecf from (b) Note: No marks if mass is used instead of the weight
				Total	7	

Question			Expected Answers	Marks	Additional guidance
4	(a)		(Electric field strength is the) force per (unit positive) charge	B1	Allow: $E=F / Q, F$ is the force on a (positive) charge Q
	(b)		Parallel and equally spaced lines at right angles to plates Correct upward direction of field shown on at least one field line	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(c)	(i)	An arrow vertically downwards at \mathbf{P}	B1	
		(ii)	$\begin{align*} & E=\frac{3400}{0.050} \text { or } E=6.8 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & a=\frac{E Q}{m} \\ & a=\frac{6.8 \times 10^{4} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text { or } a=\frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}} \\ & \text { acceleration }=1.19 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \text { or } 1.2 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \tag{C1} \end{align*}$	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $\begin{array}{ll} E=\frac{3400}{0.050 \times 10^{-2}} \text { or } E=6.8 \times 10^{6}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) & \mathrm{C} 1 \\ a=\frac{E Q}{m} & \text { C1 } \\ a=\frac{6.8 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} & \text { A0 } \end{array}$
		(iii)	$\begin{aligned} & t=\frac{0.04}{4.0 \times 10^{7}} \\ & \text { time }=1.0 \times 10^{-9}(\mathrm{~s}) \end{aligned}$	B1	Allow: $1 \times 10^{-9}(\mathrm{~s})$ or $10^{-9}(\mathrm{~s})$
		(iv)	$\begin{aligned} & \text { initial vertical velocity }=0 \text {, final vertical velocity }=\text { at } \\ & \text { vertical velocity }=1.2 \times 10^{16} \times 1.0 \times 10^{-9} \\ & \text { (Allow: } \left.1 \times 10^{16} \times 1.0 \times 10^{-9}\right) \\ & \text { vertical velocity }=1.2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below vertical velocity $=1.2 \times 10^{18} \times 1.0 \times 10^{-9} \mathrm{M} 1$ vertical velocity $=1.2 \times 10^{9}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad$ A0

	stion	Expected Answers	Marks	Additional guidance
5	(a)	$\begin{aligned} & E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\ & \frac{(-) 4.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(1.75 \times 10^{-2}\right)^{2}} \text { and } \frac{5.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(1.75 \times 10^{-2}\right)^{2}} \\ & E_{\mathrm{B}}=1.17 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \text { and } E_{\mathrm{A}}=1.47 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { field strength }=(1.17+1.47) \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { field strength }=2.64 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \text { or } 2.6 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \\ & \text { direction }=\text { to the left } / \text { towards } \mathrm{B} \end{aligned}$	C1 C1 A1 B1	Ignore signs Allow: 2 marks for $2.9(4) \times 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$ when the fields are subtracted Allow: 2 marks for $6.6 \times 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$ for using $3.5 \times 10^{-2} \mathrm{~m}$
	(b)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & \text { force }=\frac{4.0 \times 10^{-9} \times 5.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(3.5 \times 10^{-2}\right)^{2}} \\ & \text { force }=1.47 \times 10^{-4}(\mathrm{~N}) \end{aligned}$	C1 C1 A0	Ignore signs Allow: ε_{0} in the equation
	(c)	$\begin{aligned} & (\text { weight }=) 4.5 \times 10^{-5} \times 9.81 \text { or }(\text { weight }=) 4.4(1) \times 10^{-4}(\mathrm{~N}) \\ & \tan \theta=\frac{1.5 \times 10^{-4}}{4.41 \times 10^{-4}} \\ & \text { angle }=18.8\left({ }^{\circ}\right) \text { or } 19\left({ }^{\circ}\right) \end{aligned}$ (Allow: Full credit when angle is determined using a scale diagram)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: weight $=4.5 \times 10^{-5} \times g$ Note: Using force $=1.47 \times 10^{-4}(\mathrm{~N})$ gives an angle of 18.4°; hence allow 18° Allow: 2 marks for $\theta=71^{\circ}$; this is the complementary angle Allow: 1 mark for ' $\tan \theta=\frac{1.5 \times 10^{-4}}{4.5 \times 10^{-5}}, \theta=73^{0}$ ' when mass is used instead of weight.
		Total	9	

